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Masked Prioritized Synchronization for Interaction
and Control of Discrete Event Systems

Ratnesh Kumar and Michael Heymann

Abstract—This paper extends the formalism of prioritized
synchronous composition (PSC), proposed by Heymann for
modeling interaction (and control) of discrete event systems, to
permit system interaction with their environment via interface
masks. This leads to the notion of masked prioritized synchronous
composition (MPSC), which we formally define. MPSC can be
used to model interaction of systems at single as well as multiple
interfaces. We show that MPSC can alternatively be computed by
“unmasking” the PSC of “masked” systems, thereby establishing
a link between MPSC and PSC. We next prove that MPSC is
associative and thus suitable for modeling and analysis of super-
visory control of discrete event systems. Finally, we use MPSC
of a discrete event plant and a supervisor for controlling the
plant behavior and show (constructively) that under the absence
of “driven” events, controllability together with normality of
the given specification serve as conditions for the existence of a
supervisor. This extends the results on supervisory control, which
permits control and observation masks to be associated with the
plant only.

Index Terms—Controllability, discrete event system, masked
prioritized synchronization, normality, supervisory control.

I. INTRODUCTION

SUPERVISORY control of discrete event systems (DESs)
has been studied using prioritized synchronous composi-

tion (PSC) [4] in [5], [15], [10]–[12], [1], [3]. In PSC, each
system component possesses an event priority set specifying
the set of events whose execution in the environment requires
its participation. Thus, when many systems are interacting, an
event can occur if and only if all the systems having priority
over the event can actively participate. In this case, the event
occurs synchronously in all such systems; otherwise the event
is “blocked” from occurring. The systems that do not have pri-
ority over the event will also participate in the event execution
if they can, which is known asbroadcast synchronization;oth-
erwise the event takes place without the participation of such
systems. Thus the systems with no priority over an event cannot
block its execution. Theevent control functionof Inan [7] as-
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signs state-dependent event priority sets, thereby generalizing
the notion of PSC. However, when applied to supervisory con-
trol, the event control functions are taken to be constant, thus
becoming equivalent to PSC. It should be noted that in the PSC
formalism each system is associated with an event priority set,
and the events that belong to that set are determined by the appli-
cation. For example, in the context of supervisory control, this
is determined by the controllability/drivability property of the
events as explained below.

The formalism of PSC models the interaction between
discrete event plants and supervisors quite effectively when
all the events are completely observable at their interface, the
need to ensure that interacting systems are control compatible
[16], [17] is eliminated. In this setting, the priority set of the
plant includes the events that are uncontrollable (such as sensor
and failure events) and controllable (such as actuator events),
whereas that of the supervisor includes the events that are
controllable anddriven (such as command and control-policy
switch events). Thus the controllable events are in the priority
sets of both the plant and supervisor and can be blocked
by either of them, whereas the uncontrollable (respectively,
driven) events can only be blocked by the plant (respectively,
supervisor).

In many situations, systems interact via interfaces. For ex-
ample, in an elevator system, when a user requests an elevator,
one of the elevators responds to the request. An internal logic
decides which elevator should respond, but this information is
masked from the user. Similarly, in a pumping station consisting
of several pumps, a command to start a pump may be nonspe-
cific, and the decision of which pump to start may be resolved by
an internal logic that is masked from the agent issuing the com-
mand. These examples illustrate that certain events of the system
may be masked at the system interface from thecontrolperspec-
tive. Similarly, events may also be masked from theobservation
perspective. For example, different kinds of failure events may
be reported to the environment as the same type of failure; thus
masking the difference between the failure events from the envi-
ronment. In fact, we can viewunobservableevents as those that
are masked to be indistinguishable from “silent” events. When
systems interact through nonidentity interface masks, then their
interaction through PSC requires that the systems be observa-
tion compatible with respect to their interface masks, which is
a limitation of PSC [16], [17]. Thus it is sensible to generalize
the notion of PSC to describe prioritized synchronization of sys-
tems interacting through nonidentity interface masks. This then
will allow us to model interactions of systems without the need
to ensure that they are control or observation compatible [16],
[17].
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An effort to generalize PSC in such a direction was first
presented in [16] and [17], and the generalization was called
masked composition(MC). In MC, each system was associated
with two types of mask functions: a control mask that identified
events “from the control perspective” and an observation mask
that identified events “from the observation perspective.” Mod-
eling the interaction of systems in this formalism is difficult
owing to its complexity.

In this paper, we introduce an intuitive generalization of PSC,
which we call masked prioritized synchronous composition
(MPSC). MPSC retains the basic concept of PSC in that each
system has its own event priority set, i.e., the set of events
in which it must participate in order for them to occur in the
composition (equivalently, the set of events it can block by not
participating). The new concept that we add here to generalize
PSC is that each system is allowed to interact with its environ-
ment via interfaces that are modeled as event mask functions.
(The masks are similar in spirit to the masks introduced in [2]
and [13] but were restricted there to the observation process.)
Event mask functions as presented here constitute “static”
interfaces, in that they mask the events independently of the
system evolution history. It is possible to consider more general
“dynamic,” trace-dependent event masks such as the “reporter
maps” in the work on hierarchical supervisory control [19],
[18]. That, however, we do not explore in this paper.

Since a system may have multiple interfaces, the mask func-
tions are unique not to the system but rather to the particular
interface of the system. When two or more systems interact at
a common interface, they use their respective mask functions to
map their respective “internal” events to the “external” or inter-
face events. Since internal events of a system that are masked to
a common external event interact with the environment indis-
tinguishably, there is no loss in assuming that a mask function
respect the priority partition of the events, i.e., two events can
be masked to a common external event if and only if they are
either both or none in the priority set of the system.

Below, we formally define masked prioritized synchroniza-
tion of discrete event systems modeled by nondeterministic state
machines. MPSC can be used to model the interaction of sys-
tems at multiple interfaces. We show that the MPSC of sys-
tems can alternatively be computed by “unmasking” the PSC
of suitably “masked” systems, thereby establishing a link be-
tween MPSC and PSC. We prove that when systems are con-
nected at a common interface, their MPSC satisfies the desir-
able property of associativity, showing that MPSC provides a
useful formalism for modeling system interaction. Finally, we
study the problem of MPSC-based control of a discrete event
plant with priority set being the entire event set. The plant inter-
acts via MPSC with a supervisor, modeled as a deterministic
state machine, for which the event priority set and the inter-
face mask are given. Under the assumption that the set of driven
events is empty, we show that there exists a supervisor so that
the behavior of the MPSC of the plant and the supervisor pro-
jected onto the event set of the plant equals a specification lan-
guage if and only if the specification language is controllable
and normal. (The more general case of nonempty driven events
set is reported in a recent paper [8].) The proof of this existence

result is constructive and provides a way to compute a super-
visor whenever one exists. These results extend the existing re-
sults on supervisory control that permits control masks (limited
to projection type) and observation masks to be associated with
the plant only. We illustrate our design via a simple example. In
particular, this example shows the effect of having masks asso-
ciated also with the supervisor, and of having general nonpro-
jection-type control mask associated with the plant.

II. NOTATION AND PRELIMINARIES

Given an event set , we let denote the set of all finite-
length sequences of events from, calledtraces, including the
trace of zero length, denoted. For an event set , we use to
denote . A subset of is called alanguage. Given trace

, we let denote its length. For a language ,
theprefix closureof , denoted , is the set of all prefixes
of traces from . is calledprefix closedif .

Nondeterministic state machines (NSMs) are used to
model discrete event systems. An NSM is a five-tuple

, where is its set of states,
is its set of events, is its

transition function, is its initial state, and
is its set of marked, or final, states. For any set of states

and set of events , the notation
is used to denote . is called deter-
ministic if for all and , and

. A triple
is called a transition if ; If , the
transition is called silent or an-transition. Given an inter-
face mask from the internal events

to external interface events , the “masked” NSM
is obtained by replacing

each transition of by the
transition . The interface mask is extended
to be defined over traces in as follows:

For , the closureof , denoted , is the set
of states reached by the execution of zero or more-transitions
from the state and is defined recursively as follows:

The -closure map can also be used to extend the definition
of transition function from events to traces. Thus we obtain

, which is defined inductively as fol-
lows:

where for any , . Using
this extended transition function, thegeneratedand themarked
languages of , denoted, respectively, as and , are
defined as
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When two systems and interact via prioritized synchro-
nization, their interface events are the same as their own internal
events since in PSC the interface masks of bothand are the
identity function, i.e., . Letting
denote the event priority sets of and respectively, their
PSC, denoted , is the NSM defined as

, where , ,
, and the transition function

is defined as follows:

if ,

if ,

if ,

otherwise

The event priority set of is given by .
Thus, if an event is executable in both systems, then it oc-

curs synchronously with the participation of both the systems.
Otherwise if it is executable in only one of the systems, and the
other system cannot block it (it is not in the event priority set of
the other system), then it occurs without the participation of the
other system. Finally, the composition can execute-transitions
asynchronously. In the special case when the event priority sets
of both systems are the entire event set, then in their com-
position each event can only occur synchronously, resulting in
the reduction of the PSC to the strict synchronous composition
(SSC).

We recall the conditions of controllability and normality of
discrete event systems, which we shall need later. Given an event
set , a prefix-closed language , a set of events ,
and a mask function defined over , a language is
said to be -controllable[14] if

and is said to be -normal [13] if

We further recall that controllability (respectively, normality)
is preserved under language union. Consequently, the supremal
controllable (respectively, the supremal normal) sublanguage of
a given language exists. Similarly, controllability (respectively,
normality) of prefix-closed languages is preserved under lan-
guage intersection, whence the infimal prefix-closed and con-
trollable (respectively, the infimal prefix-closed and normal) su-
perlanguage of any given language exists.

III. M ASKED PRIORITIZED SYNCHRONIZATION

In this section, we formalize the notion of MPSC of two sys-
tems as discussed in the introduction. Two systems, modeled
as NSMs and , are connected as shown in Fig. 1.and

evolve over their “internal” events and , respectively,

Fig. 1. P andQ interacting at a common interface.

Fig. 2. P andQ interacting at two interfaces.

and their event priority sets are and , respec-
tively. The systems interact at a common interface consisting of
the interface (or “external”) events . The interface mask of

is given by , and that of is given
by . The composed system is denoted by

, where the two interface masks and are not
explicitly included in the notation (to keep the notation simple).

The interface masks respect the event priority-partition con-
sistency condition, that is

A similar condition is satisfied by the interface mask . In-
terface masks that respect the event priority-partition consis-
tency condition are calledpriority consistent masks. If we de-
fine and

, then the priority consistency conditions can be rewritten as
and .

Remark 1: The formalism of MPSC is also applicable to sys-
tems interacting at multiple interfaces. For example, in Fig. 2,
and interact at a pair of interfaces. The interface mask offor
the two interfaces are and ,
respectively, and similarly those for are
and , respectively. This scenario where
and interact at two interfaces can be transformed into the one
where they interact at a single interface through masksand

, respectively, defined as follows:

Example 1: Consider a pumping station consisting of two
identical pumps and and a synchronizer sharing a
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Fig. 3. Interacting pumping and controlling stations.

common interface, as shown in Fig. 3. (In all our examples,
we assume that all states are marked and omit indicating the
markings from the figures.) The event set of pumpconsists of

, representing start, stop, fail, and repair, respec-
tively, and that of the synchronizer consists of . The
synchronizer assures that the two pumps are started alternately
and the first pump is started initially. The priority set of pump

consists of , and that of the synchronizer consists
of . Also, the three systems interact with each other via
the identity interface mask. So the MPSC of the three systems is
equivalent to their PSC and can be obtained using the definition
of PSC. The event priority set of the pumping stationis given
by the union of the event priority sets of its three subsystems.

The pumping station interacts with a controlling station
at a different interface and offers a start and a stop button and a
fail indicator at this interface. The controlling station can start
(event ), stop (event ), or issue a repair command (event)
whenever a fail (event ) is indicated. The priority set of the
controlling station consists of , and its interface mask
is the identity function. The interface mask of the pumping
station identifies s to , s to , s to , and s to , at the
interface with the controlling station. Clearly, is priority
consistent. Since s and s are priority events of and are
masked to and , respectively, which are priority events of

, s and s are controllable events. However, they are only
nonuniquely controllable since boths (respectively, s) are
enabled in when (respectively, ) is enabled in . On the
other hand, s are uncontrollable events since they are in the
priority set of and are masked to, which is a nonpriority
event of . Similarly, s are the driven events since they are
nonpriority events of and are masked to, which is a priority
event of .

Definition 1: Consider systems and interacting at a
common interface with events , as shown in Fig. 1, their
respective event priority sets and , and their respective
priority consistent interface masks and . Then the
masked prioritized compositionof and is given by

, where ,

, , , and
, is defined as follows:

if

otherwise

if , and

otherwise

if , and

otherwise

The event priority set of is given by

Intuitively, and interact by either 1) executing synchro-
nously events and , respectively, whenever these are exe-
cutable in the respective states and are masked to a common in-
terface event that is observable at the interface, or 2) executing
individual events (without participation of the other system)
whenever either the event is unobservable at the interface or
no event of the other system that has the same observation as
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Fig. 4. Illustration of MPSC.

the former event is executable at the current state, and the event
cannot be blocked by the other system (in the sense of PSC). An
-transition can, of course, occur asynchronously in the compo-

sition. Note that if and have and states, respectively,
then the number of states in their MPSC is , and hence
there can be transitions defined at each state.

Example 2: Consider the state machinesand shown in
Fig. 4(a) and (b). We have , ,

, and . Also,
, , and . The

masked prioritized composition is shown in Fig. 4(c).
The transitions labeled are as in
the first case of Definition 1, those labeled are as in
the second case of the definition, that labeled is as in the
third case of the definition, and that labeledis as in the fourth
case of the definition.

Remark 2: Note that in the second clause of Def-
inition 1, if and only if

. A similar statement
applies to the third clause. So it follows that

(1)

and hence there is no loss of generality in requiring that
the masks be priority consistent. [If the masks are not pri-
ority consistent, then the priority sets can be redefined as

and so that the MPSC
remains unaltered but the masks become priority consistent.]

The “external” behavior of the MPSC of and observed at
the interface, called theprojection of on and denoted

, is obtained by replacing transitions of
as follows:

1) , replace it by
;

2) , replace it by
;

3) , replace it by
.

Thus the behavior observed at the interface consists of only the
external events .

Similarly, the behavior of the MPSC of and projected
to the events of , denoted , is obtained by
“erasing” each -event label from all transitions of
as follows:

replace it by

It is easily seen that the generated (respectively, marked) lan-
guage of is contained in the generated (respec-
tively, marked) language of. Thus MPSC of with restricts
the behavior of . This fact can be used to employ MPSC as a
mechanism of control.

Example 3: The MPSC of the pumping station and the
controlling station of Example 1 is shown in Fig. 5. In each
state label of the composition, the first index denotes the state of
the synchronizer, the second that of the pump 1, the third that of
the pump 2, and the fourth that of the controlling station. Each
transition is labeled by a pair of symbols—the first (respectively,
second) is the event label of the corresponding transition in
(respectively, ).

In the initial state (1111), is enabled in and , in
, and in . Since is in the priority set of and and is

masked to , which is in the priority set of , synchronizes
with , causing a transition to the state (2212). On the other
hand, since is in the priority set of also, which refuses it in
its initial state, is initially blocked in the composition. Similar
analysis can be used to derive the entire NSM of the composed
system as depicted in Fig. 5.

Next we show that the MPSC of two systems can alternatively
be obtained by first “masking” the individual systems, next com-
puting their PSC, and finally relabeling the transitions by “un-
masking” them as described in the following algorithm.

Algorithm 1: Consider systems and interacting at a
common interface with events , as shown in Fig. 1, their
respective event priority sets and , and their respective
priority consistent interface masks and . Then their
MPSC can be obtained as
follows.

1) Compute the “masked” NSMs and and
masked event priority sets

and .
2) Compute the PSC .
3) Replace each transition in

to obtain NSM as follows:

a) , replace
it by the set of transitions

i)
if

;
ii)

if
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Fig. 5. MPSC of pumping and controlling stations.

;
iii)

if

b) , add the
set of transitions

i)
if

;
ii)

if

Note that the complexity of Algorithm 1 is of the same order
as the number of transitions in the MPSC ofand . [if and

have and states, respectively, then there are
transitions in their MPSC.]

The following theorem proves the correctness of Algorithm
1.

Theorem 1: Let be as in Algo-
rithm 1. Then .

Proof: Since the two NSMs and have identical
states , identical events ,
identical initial state , and identical final states

, we only need to show that they also have
the identical set of transitions. We first show that each transition
of is also a transition of .

Consider first a transition
of as in clause 3a-i) of Algorithm 1.

Then, from this clause, , , and
. So from the first clause in Definition

1, it follows that is a transition
of .

Next, consider a transition
of as in clause 3a-ii) or 3b-i) of Algorithm

1. In the first case, from clause 3a-ii), we have
and , ; whereas
in the second case, from clause 3b-i),

and . So in either case, it follows from the
second clause in Definition 1 that
is a transition of . By symmetry, a transition

of is also a transition of .
Finally, consider a transition

of as in clause 3b)i) of Algorithm 1. Then from this
clause . So from the last clause of Definition
1, is also a transition of . By
symmetry, a transition
of is also a transition of .

It remains to prove the converse that each transition of
is also a transition of . Consider first a transition

of as in the first clause of Definition 1. Then
from this clause , and

. Define .
Then and .
So it follows from the first clause in the definition
of PSC that is a transition of

. So by applying clause
3a=i) of Algorithm 1, we conclude that the transition

is also a transition of .
Next, consider a transition

of as in the second clause of
Definition 1. Then, from this clause, we have
and , ,
or . We consider the two cases sepa-
rately. In the first case, when , define

. Then we have
and . Also,
since , .
So it follows from the second clause in the definition
of PSC that is a transition of

. So, by applying clause
3a-ii) of Algorithm 1, we conclude that the transition

is a transition of . On
the other hand, in the second case, when ,
from the last clause in the definition of PSC, we have
that is a transition of

. So, by applying clause 3b-i) of
Algorithm 1, we conclude that
is a transition of . By symmetry, we have that a transition

of
is also a transition of .

Finally, consider a transition
of . Then from the last clause in Defi-

nition 1, , which implies .
Hence from the last clause in the definition of PSC,
we have that is a transition of

. So, by applying clause 3b-i
of Algorithm 1, we conclude that is
a transition of . By symmetry, we have that a transition

of is also a
transition of . This completes the proof.

Theorem 1 establishes a link between MPSC and PSC. By
definition, MPSC generalizes PSC; conversely, it follows from
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Theorem 1 that MPSC can be computed using the definition of
PSC by applying Algorithm 1, which requires a “premasking”
and a “postunmasking” operation. This fact is not explored in
this paper any further. A consequence of Theorem 1, however,
is that , which
can be used to derive results regarding the control of the be-
havior observed at the interface.

We next investigate the associativity of MPSC. It is known
from [5, Theorem 13.4] (see also [10], where a detailed proof
was given) that PSC is associative, i.e., given NSMs
that evolve over a common event setalong with their respec-
tive priority sets , the following holds:

Thus associativity lets us compute the composition of several
systems by computing it two at a time.

We show that the property of associativity also holds for
MPSC of systems interacting at a common interface. Consider,
for example, three NSMs with respective event pri-
ority set interacting at a common
interface as shown in Fig. 6. The interface masks of
are given by , respectively.

In order to demonstrate associativity of MPSC, we show
that MPSC of can be computed by first computing
the MPSC of any of the two systems and next composing this
with the third system. Two ways of achieving this are shown in
Fig. 7. In Fig. 7(a), composition of is first obtained, and
next this is composed with, whereas in Fig. 7(b), composition
of is first obtained, which is then composed with. We
use the mask function pair to denote the mask
function of the composition , the first (respectively,
second) component of which applies to transitions with an event
label in (respectively, ). Note that whenever a transition
in is labeled by an event pair ,
we have , i.e., both the events are
masked to the same interface event, which is observable at the
interface. So there is no confusion of event synchronization
when the composed system interacts with .

Theorem 2: Consider systems interacting at a
common interface with events , their respective event
priority sets , and their respective priority consistent
interface masks . Then

Proof: Let ,
denote the state set and the event set of the composition. Then
the proof follows from the fact that the composition of the three
systems in either of the two configurations of Fig. 7(a) and (b)
has identical transition function and is given by the equation
shown at the bottom of the next page.

Finally, the event priority set of the composition of the three
systems in either of the two configurations of Fig. 7(a) and (b)
equals

Fig. 6. P; Q; R interacting at a common interface.

Fig. 7. Two ways of associating composition ofP; Q; R.

Remark 3: The transition function of the three systems given
in the proof of Theorem 2 also defines the transition function of
the composition of the systems shown in Fig. 6.

IV. SUPERVISORYCONTROL

In this section, we extend the supervisory control theory to
the present setting where a supervisor controls a discrete event
plant by interacting with it at a common interface via masked
prioritized synchronization similar to that shown in Fig. 1 under
the restriction that the set of driven events is empty. The plant
is modeled by an NSM having
event priority set and priority consistent interface mask

, where is the set of interface events. Since
the supervisor exercises its control based on its observation of
the event tracesgenerated by the plant, it is modeled by ade-
terministic state machine . The
event priority set of the supervisor and its interface
mask are given.

It is natural to require that each event of the plant be ei-
ther in the priority set of the plant or identified via the inter-
face masks with some event that is in the priority set of the su-
pervisor, i.e., , where

. In other words, the set of plant events is the
union of controllable events , the uncontrol-
lable events , and the driven events

. This requirement is consis-
tent with the corresponding requirement in the setting of PSC
that each event of the plant is either in its own priority set or
in the priority set of the supervisor, and rules out the possibility
that a nonpriority event of the plant is identified with no priority
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event of the supervisor or is masked to. The above requirement
together with the assumption that there are no driven events im-
plies that .

Table I summarizes the controllability and observability prop-
erty of each event of the plant that results from the event prior-
ities and interface masks of the plant and the supervisor. Sim-
ilarly, Table II summarizes the properties of the events of the
supervisor. Note that while the supervisor can execute an ob-
servable driven event to issue a command, it can execute an un-
observable driven event to change its control policy.

The control specification is given by a language
describing the permitted event sequences of the controlled plant

. The control task is to design a deterministic
supervisor such that the controlled plant behavior satisfies
the specification under the restriction that no driven events are
present.

Example 4: Consider the pumping station and interface
of Example 1 as the uncontrolled plant. The control task is

to design a controlling stationthat restricts the plant to operate
so thatat least one pump is idle at any given time. This desired
specification is shown in Fig. 8. The event priority set and the
interface mask function of a controlling station to be designed
enforcing such a specification are as given in Example 3, except
we assume that the repair events are also controllable. (Recall
our assumption for this section that the set of driven events is
empty.)

We are interested in obtaining a necessary and sufficient
condition for the existence of a supervisor for the supervisory
control problem described above. Under the assumption of no
driven events, we show that -controllability to-
gether with -normality of the desired behavior
serves as a necessary and sufficient condition for the existence
of a supervisor. We first prove two preliminary results about
controllability and normality.

The first lemma provides an alternate characterization of
-normality.

if

otherwise
if ,

,

otherwise
if

otherwise
if

otherwise
if

otherwise
if

otherwise
if

otherwise
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Fig. 8. Design specification for the pumping station.

TABLE I
CONTROLLABILITY AND OBSERVABILITY PROPERTY OFPLANT EVENTS

TABLE II
CONTROLLABILITY AND OBSERVABILITY PROPERTY OFSUPERVISOREVENTS

Lemma 1: Consider and a mask . Then the
following are equivalent:

1) is -normal;
2)

;
3)

.

Proof: We begin by showing the equivalence of the
first two assertions. To see that the first assertion implies the
second, it suffices to note that ; so from

-normality of , it follows that .
To see the converse, pick such that

. Then by setting in the second
assertion, it follows that .

Next we prove the equivalence of the last two assertions. To
see that the second assertion implies the third, simply set

. Then from the hypothesis of the third
assertion, . So from the second assertion,

. To prove the converse, we fixand pro-
ceed by induction on . For the base step, let ,
and without loss of generality let . Set ,

. From the hypothesis of the second asser-
tion and

. So from the third assertion, .

Next, for the induction step, let , where
. Then we have three possible cases:

1) and ;
2) and ;
3) and .

We only analyze the first case; the others can be analyzed simi-
larly. In the first case, since , and since from
the hypothesis of the second assertion , it
follows from the induction hypothesis that . Set

. Then since , and since
, it follows from the third assertion that

, completing the induction step.
Remark 4: Let be a trim [6] deterministic state machine

that accepts a -normal language so that
. Then it follows from the third assertion of

Lemma 1 that for any and indistinguishable events
, and are Nerode-equivalent. Hencecan be

chosen such that transitions on a pair of indistinguishable events
(under ) from any state whenever defined have the same
successor state, and transitions on unobservable events (under

) from any state whenever defined are self-loops. We exploit
this fact in constructing a supervisor for our supervisory control
problem.

Let denote the infimal prefix-closed
-controllable and -normal superlanguage

of . Then the next lemma states that
equals if and only if is -controllable
and -normal.

Lemma 2: Consider plant , language , set of
uncontrollable events , and interface mask . Then

if and only if is -con-
trollable and -normal.

Proof: We first prove the necessity. To see the
-controllability of , pick and

such that . Then from -con-
trollability of , . This implies

as desired. Similarly
to see the -normality of , pick
and such that . Then from the

-normality of , . This implies
as desired.

Next to prove sufficiency it is enough to show that
, since the reverse inclusion

holds trivially. Clearly, this is true for . So we assume
. We prove the desired inclusion by induction on

the length of traces. Since (recall ), it
suffices to show that for any such that

, . By the induction
hypothesis, , and since , it follows
from its definition that either 1) or 2) there exists

such that . [Otherwise, the proper
sublanguage of , , obtained by
disabling after is a prefix-closed, -controllable,
and -normal superlanguage of , a contradiction.]
Since we also have , -controllability
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of in case 1) [respectively, -normality of in
case 2)] implies as desired.

We next state the result for the existence of the supervisor.
Theorem 3: Consider a plant with priority set

and priority consistent interface mask . Let
be a prefix-closed nonempty desired language,

be the event set of the supervisor, its event
priority set, and its priority consistent
interface mask. Then there exists a deterministic supervisor

such that if and only if is
-controllable and -normal, where

.
Proof: We first prove the necessity.

Let and
. To see

-controllability and -normality of ,
pick such that and

. Then since , must participate
in the execution of every event in the trace. This together
with the fact that and

implies that there exists
such that and .
Then since and every event in
is defined at every state of , it follows that either

[which is the case when
] or . In either case, we

have , which implies
proving that . Next since

, there exists such that .
Moreover, since , it follows from the
determinism of that the same set of states are reached
by “tracking” the two traces and in , including
the state . This implies . Thus

as desired.
Next, to prove the sufficiency, construct a deterministic su-

pervisor as follows. First construct a deterministic trim state ma-
chine

that generates , the infimal prefix-closed
-controllable and -normal superlan-

guage of . Then, as explained in Remark 4, since
is -normal, can be chosen so that transitions on
indistinguishable events on any state whenever defined have the
same successor state, and transitions on unobservable events
on any state whenever defined are self-loops.

Next, obtain a supervisor

by modifying each transition of
as follows.

1) If , then replace it by a transi-
tion such that

.
2) If , then delete this transition.

Then it is easy to see thatis deterministic. It remains to show
that . Since is -con-

trollable and -normal, from Lemma 2 it suffices to
show

(2)

As before, let and
.

We first prove the forward containment in (2). Since
, it suffices to show that
. First, consider a trace

that generates. Then since has priority over each
event (the set of driven events is empty), it participates in each
transition of the trace. On the other hand, sincehas priority
over controllable events and has transition defined on every
observable uncontrollable event at each state, it participates
in the execution of each observable event of the trace. We
show by induction on length of that

. Clearly, this holds for length zero since
is nonempty and prefix-closed, which establishes the base step.
For the induction hypothesis, let . If is uncon-
trollable or unobservable, then by definition of and
induction hypothesis [which implies ],
it follows that . On the other hand, if is
controllable and observable, then a corresponding event occurs
synchronously in . This means that if is the state reached
by the execution of in , then is defined at , which
of course implies that [recall that

]. This proves the induction hypothesis.
To complete the proof of the sufficiency part, we next need

to show the reverse containment in (2). Pick
. Then there exists unique state

and a state such that and
. Let be the trace corresponding to

obtained by relabeling/deleting the various transitions ofin
. Then and . Then it

is easy to see that , which implies
as desired.

The supervisor constructed in the proof of Theorem 3 is
based upon a generator of . The following lemma
provides a modular way of doing that. We let
denote the infimal prefix-closed -controllable and
the infimal prefix-closed -normal superlanguage
of , respectively. It is known that and

.
Lemma 3: Consider , a set of uncontrol-

lable events , and a mask over . Then
.

Proof: The backward containment can be shown as
follows. By definition, we have , which im-
plies , where the last
equality follows from the fact that is prefix-closed and

-normal. For the forward containment, it suffices to
show that is a prefix-closed -controllable
and -normal superlanguage of since
is the infimal such language. By definition, is a
prefix-closed and -normal superlanguage of ,
and it remains to show that it is also -controllable.
To see this, pick and . Then there



1980 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 11, NOVEMBER 2000

exists such that . By prefix-clo-
sure and -controllability of , it follows that

. Finally, since , it follows that
as desired.

Remark 5: Lemma 3 provides a modular way of con-
structing . Given a trim acceptor for [which gener-
ates ], we first obtain a generator for
by augmenting the state space of the acceptor ofwith
a “dump” state, and then by adding transitions from each
state to the dump state on those uncontrollable events that
are undefined at that state. Next, we obtain the generator for

by replacing the event labelof
any transition in the generator of by event labels in the set

, and also adding self-loops on all unobservable events
at each state of the generator of .

Example 5: We now return to Example 4, where a specifica-
tion for the pumping station of Example 1 was formulated,
with a slight modification that the events and are con-
trollable events (instead of being the driven events) so that we
can apply the results of Theorem 3 (recall that Theorem 3 re-
quires the restriction that the set of driven events be empty). This
specification, shown in Fig. 8, when intersected with the gen-
erated language of the pumping station imposes the language

, as shown in Fig. 9. In this figure, each state has
four components: the first component denotes the state of the
synchronizer (Fig. 3), the second that of pump 1 (Fig. 3), the
third that of pump 2 (Fig. 3), and the last that of the specifica-
tion (Fig. 8).

Since is prefix-closed and nonempty, from The-
orem 3 there exists a deterministic supervisorsuch that

if and only if is -con-
trollable and -normal. In this case,
and identifies s to , s to , s to , and s to .
We use Lemma 2 to verify -controllability and

-normality of . The generator for is
shown in Fig. 10(a). Then it is easy to see that the synchronous
composition of this with yields the same state machine as
the generator for shown in Fig. 9. This establishes thatis

-controllable and -normal.
Using the procedure described in the sufficiency part of

the proof of Theorem 3, we arrive at the supervisor shown in
Fig. 10(b) that enforces as the projected behavior on the
event set of the composed system .

Remark 6: Theorem 3 provides a necessary and sufficient
condition for the existence of a deterministic supervisor
with event priority set and interface mask for a given
plant with event priority set and interface mask

so that the projected behavior on the plant events of the
composed system equals a given specification language, i.e.,

, in terms of the familiar conditions of
controllability and normality. The existing tests for controlla-
bility and normality, which are of polynomial complexity, can
thus be applied to verify the existence of a supervisor (see, for
example, [9, Sections 3.2.3, 4.2.3]).

In the proof of the sufficiency part of Theorem 3, we also
provide a technique to obtain a supervisor whenever it exists:
First obtain a minimal deterministic state machinethat gener-
ates , the infimal prefix-closed -controllable

Fig. 9. SpecificationK � L(G) for pumping stationG.

Fig. 10. Generator forK and supervisorS.
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and -normal superlanguage of the specification lan-
guage, where . Next replace
each observable event label of any transition in by
an event label such that , and
delete all transitions of on unobservable events.

In case the specification language does not satisfy either
controllability or normality condition, amaximally permissive
supervisor can be obtained by replacing the specification lan-
guage by its supremal prefix-closed -controllable
and -normal sublanguage, which can be computed
using the existing algorithms (see, for example, [9, Section
4.2.2]).

V. CONCLUSION

In this paper, we introduced the notion of masked prioritized
synchronous composition to model the mechanism of interac-
tion of discrete event systems that interact with the environment
through interfaces. This extends the formalism of prioritized
synchronous composition, which assumes the identity interface
mask function. This extension is particularly useful in supervi-
sory control, where the limited control and observation capabil-
ities of a supervisor are captured in theexternal interconnection
mechanismof MPSC rather than theinternal state logicof the
supervisor.

We established a link between MPSC and PSC by showing
that MPSC of two systems can be computed using PSC, by ap-
plying a “premasking” and a “postunmasking” operation. We
also showed that whenever three or more systems interact at a
common interface, their MPSC possesses the desired property
of associativity. This is specially useful in context of supervi-
sory control, where the plant and supervisor are distributed con-
sisting of several interacting components.

We also studied the problem of obtaining a supervisor that
controls a given discrete event plant by the MPSC based inter-
action when there are no driven events, so that the behavior of
the composed system, when projected on the events of the plant,
equals a given specification language. The familiar conditions
of controllability and normality were found to be necessary and
sufficient for the existence of a supervisor. A recent paper [8]
studies the more general case of supervisory control when the
set of driven events is nonempty.
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